GPU的历史性时刻
8月23日,GPU巨头Nvidia发布了2023年二季度财报,其结果远超预期。总体来说,Nvidia二季度的收入达到了135亿美元,相比去年同期增长了101%;净利润达到了61亿美元,相比去年同期增长了843%。Nvidia公布的这一惊人的财报一度在盘后让Nvidia股票大涨6%,甚至还带动了众多人工智能相关的科技股票在盘后跟涨。
(相关资料图)
Nvidia收入在二季度如此大涨,主要靠的就是目前方兴未艾的人工智能风潮。ChatGPT为代表的大模型技术从去年第三季度以来,正在得到全球几乎所有互联网公司的追捧,包括美国硅谷的谷歌、亚马逊以及中国的百度、腾讯、阿里巴巴等巨头。而这些大模型能进行训练和推理的背后,都离不开人工智能加速芯片,Nvidia的GPU则是大模型训练和推理加速目前的首选方案。
由于各大科技巨头以及初创公司都在大规模购买Nvidia的A系列和H系列高端GPU用于支持大模型训练算力,这也造成了Nvidia的数据中心GPU供不应求,当然这反映到财报中就是收入和净利润的惊人增长。
事实上,从Nvidia的财报中,除了亮眼的收入和净利润数字之外,还有一个关键的数字值得我们关注,就是Nvidia二季度的数据中心业务收入。根据财报,Nvidia二季度的数据中心业务收入超过了100亿美元,相比去年同期增长171%。Nvidia数据中心业务数字本身固然非常惊人,但是如果联系到其他公司的同期相关收入并进行对比,我们可以看到这个数字背后更深远的意义。
同样在2023年第二季度,Intel的数据中心业务收入是40亿美元,相比去年同期下降15%;AMD的数据中心业务收入是13亿美元,相比去年同期下降11%。我们从中可以看到,在数据中心业务的收入数字上,Nvidia在2023年第二季度的收入已经超过了Intel和AMD在相同市场收入的总和。
这样的对比的背后,体现出了在人工智能时代,人工智能加速芯片(GPU)和通用处理器芯片(CPU)地位的反转。
目前,在数据中心,人工智能加速芯片/GPU事实上最主流的供货商就是Nvidia,而通用处理器芯片/CPU的两大供货商就是Intel和AMD,因此比较Nvidia和Intel+AMD在数据中心领域的收入数字就相当于比较GPU和CPU之间的出货规模。
虽然人工智能从2016年就开始火热,但是在数据中心,人工智能相关的芯片和通用芯片CPU相比,获得的市场份额增长并不是一蹴而就的:在2023年之前,数据中心CPU的份额一直要远高于GPU的份额;甚至在2023年第一季度,Nvidia在数据中心业务上的收入(42亿美元)仍然要低于Intel和AMD在数据中心业务的收入总和;而在第二季度,这样的力量对比反转了,在数据中心GPU的收入一举超过了CPU的收入。
这也是一个历史性的时刻。从上世纪90年代PC时代开始,CPU一直是摩尔定律的领军者,其辉煌从个人电脑时代延续到了云端数据中心时代,同时也推动了半导体领域的持续发展;而在2023年,随着人工智能对于整个高科技行业和人类社会的影响,用于通用计算的CPU在半导体芯片领域的地位正在让位于用于人工智能加速的GPU(以及其他相关的人工智能加速芯片)。
摩尔定律的故事在GPU上仍然在发生
众所周知,CPU的腾飞离不开半导体摩尔定律。根据摩尔定律,半导体工艺特征尺寸每18个月演进一代,同时晶体管的性能也得到大幅提升,这就让CPU在摩尔定律的黄金时代(上世纪80年代至本世纪第一个十年)突飞猛进:一方面CPU性能每一年半就迭代一次,推动新的应用出现,另一方面新的应用出现又进一步推动对于CPU性能的需求,这样两者就形成了一个正循环。
这样的正循环一直到2010年代,随着摩尔定律逐渐接近物理瓶颈而慢慢消失——我们可以看到,最近10年中,CPU性能增长已经从上世纪8、90年代的15%年复合增长率(即性能每18个月翻倍)到了2015年后的3%年复合增长率(即性能需要20年才翻倍)。
摩尔定律对于半导体晶体管性能增长的驱动虽然已经消失,但是摩尔定律所预言的性能指数级增长并没有消失,而是从CPU转到了GPU上。如果我们看2005年之后GPU的性能(算力)增长,我们会发现它事实上一直遵循了指数增长规律,大约2.2年性能就会翻倍!
同样是芯片,为什么GPU能延续指数级增长?这里,我们可以从需求和技术支撑两方面来分析:需求意味着市场上是不是有应用对于GPU的性能指数级增长有强大的需求?而技术支撑则是,从技术上有没有可能实现指数级性能增长?
从需求上来说,人工智能确实存在着这样强烈的需求。我们可以看到,从2012年(神经网络人工智能复兴开始)到至今,人工智能模型的算力需求确实在指数级增长。2012年到2018年是卷积神经网络最流行的年份,在这段时间里我们看到人工智能模型的算力需求增长大约是每两年15倍。在那个时候,GPU主要负责的是模型训练,而在推理部分GPU的性能一般都是绰绰有余。
而从2018年进入以Transformer架构为代表的大模型时代后,人工智能模型对于算力需求的演进速度大幅提升,已经到了每两年750倍的地步。在大模型时代,即使是模型的推理也离不开GPU,甚至单个GPU都未必能满足推理的需求;而训练更是需要数百块GPU才能在合理的时间内完成。这样的性能需求增长速度事实上让GPU大约每两年性能翻倍的速度都相形见绌,事实上目前GPU性能提升速度还是供不应求!
因此,如果从需求侧去看,GPU性能指数级增长的曲线预计还会延续很长一段时间,在未来十年内GPU很可能会从CPU那边接过摩尔定律的旗帜,把性能指数级增长的神话续写下去。
GPU性能指数增长背后的技术支撑
除了需求侧之外,为了能让GPU性能真正维持指数增长,背后必须有相应的芯片技术支撑。我们认为,在未来几年内,有三项技术将会是GPU性能维持指数级增长背后的关键。
第一个技术就是领域专用(domain-specific)芯片设计。同样是芯片,GPU性能可以指数级增长而CPU却做不到,其中的一个重要因素就是GPU性能增长不仅仅来自于晶体管性能提升和电路设计改进,更来自于使用领域专用设计的思路。
例如,在2016年之前,GPU支持的计算主要是32位浮点数(fp32),这也是在高性能计算领域的默认数制;但是在人工智能兴起之后,研究表明人工智能并不需要32位浮点数这么高的精度,而事实上16位浮点数已经足够用于训练,而推理使用8位整数甚至4位整数都够了。而由于低精度计算的开销比较小,因此使用领域专用计算的设计思路,为这样的低精度计算做专用优化可以以较小的代价就实现人工智能领域较大的性能提升。
从Nvidia GPU的设计我们可以看到这样的思路,我们看到了计算数制方面在过去的10年中从fp32到fp16到int8和int4的高效支持,可以说是一种低成本快速提高性能的思路。除此之外,还有对于神经网络的支持(TensorCore),稀疏计算的支持,以及Transformer的硬件支持等等,这些都是领域专用设计在GPU上的很好体现。
在未来,GPU性能的提升中,可能是有很大一部分来自于这样的领域专用设计,往往一两个专用加速模块的引入就能打破最新人工智能模型的运行瓶颈来大大提升整体性能,从而实现四两拨千斤的效果。
第二个技术就是高级封装技术。高级封装技术对于GPU的影响来自两部分:高速内存和更高的集成度。在大模型时代,随着模型参数量的进一步提升,内存访问性能对于GPU整体性能的影响越来越重要——即使GPU芯片本身性能极强,但是内存访问速度不跟上的话,整体性能还是会被内存访问带宽所限制,换句话说就是会遇到“内存墙”问题。为了避免内存访问限制整体性能,高级封装是必不可少的,目前的高带宽内存访问接口(例如已经在数据中心GPU上广泛使用的HBM内存接口)就是一种针对高级封装的标准,而在未来我们预期看到高级封装在内存接口方面起到越来越重要的作用,从而助推GPU性能的进一步提升。
高级封装对于GPU性能提升的另一方面来自于更高的集成度。最尖端半导体工艺(例如3nm和以下)中,随着芯片规模变大,芯片良率会遇到挑战,而GPU可望是未来芯片规模提升最激进的芯片品类。在这种情况下,使用芯片粒将一块大芯片分割成多个小芯片粒,并且使用高级封装技术集成到一起,将会是GPU突破芯片规模限制的重要方式之一。目前,AMD的数据中心GPU已经使用上了芯片粒高级封装技术,而Nvidia预计在不久的未来也会引入这项技术来进一步继续提升GPU芯片集成度。
最后,高速数据互联技术将会进一步确保GPU分布式计算性能提升。如前所述,大模型的算力需求提升速度是每两年750倍,远超GPU摩尔定律提升性能的速度。这样,单一GPU性能赶不上模型算力需求,那么就必须用数量来凑,即把模型分到多块GPU上进行分布式计算。未来几年我们可望会看到大模型使用越来越激进的分布式计算策略,使用数百块,上千块甚至上万块GPU来完成训练。
在这样的大规模分布式计算中,高速数据互联将会成为关键,否则不同计算单元之间的数据交换将会成为整体计算的瓶颈。这些数据互联包括近距离的基于电气互联的SerDes技术:例如在Nvidia的Grace Hopper Superchip中,使用NVLINK C2C做数据互联,该互联可以提供高达900GB/s的数据互联带宽(相当于x16 PCIe Gen5的7倍)。另一方面,基于光互联的长距离数据互联也会成为另一个核心技术,当分布式计算需要使用成千上万个计算节点的时候,这样的长距离数据交换也会变得很常见并且可能会成为系统性能的决定性因素之一。
我们认为,在人工智能火热的年代,GPU将会进一步延续摩尔定律的故事,让性能指数级发展继续下去。为了满足人工智能模型对于性能强烈的需求,GPU将会使用领域专用设计、高级封装和高速数据互联等核心技术来维持性能的快速提升,而GPU以及它所在的人工智能加速芯片也将会成为半导体领域技术和市场进步的主要推动力。
标签:
下一篇:最后一页
- 普洱茶是什么茶(什么是普洱茶)
- 深圳积分入户政策是什么?2023年深圳积分入户有哪些变化?
- 环球快报:三星电子明年将为开发者推出XR设备 特别工作组正在研发
- 世界速讯:汉嘉设计:近期公司作为联合体成员之一中标了钱潮嘉苑共有产权房项目EPC工程总承包工程以及北京师范大学丽水实验学校项目工程总承包(EPC)
- 重庆布局实施167个市级重大制造业项目 前7月投资进度71.6%
- 券商第一梯队海通证券遭遇多事之秋:业绩与规模“双降”
- 纸浆期货是否有效对冲废黄板纸现货价格波动风险?
- 理文、山鹰发布停机函 包装纸市场涨价100-200元/吨
- 全部合格!广东珠海抽查5批次油墨产品
- 浆系纸种再掀新一轮提价 涨幅达200-1500元/吨
- 保定满城区开展纸制品行业专项检查 规范纸制品企业生产
- 2022年3月14日全国各地区纸厂废纸价格信息
- 包装材料、人工费等成本上升 台湾生活用纸涨价
- 上周木浆系纸品价格均有提涨 箱板纸价小幅下跌
- 景兴纸业2021年营收同比增27.70% 净利同比增41.51%
- 1-2月全国快递业务收入1574.3亿 同比增长13.8%
- 原料成本压力持续上升 浙江多家包装厂产品价格上涨3%
- 3月7日-13日生活用纸主要区域市场周度价格情况
- 安徽出台“十四五”大气污染防治规划
- 原材料/燃料价格上涨 日本卫生纸、纸尿裤提价超10%
- 新加坡超市将对塑料袋收费 至少5分新币/个
- 电子商务兴起 印度纸类包装行业发展趋势
- 2022年1-2月芬兰木材交易同比下滑20%
- 山东造纸行业深入实施“链长制”工作推进机制
- 包装原料价格波动再成热点 揭秘2021造纸上市企业业绩
- 国家统计局:1-2月规上工业增加值同比实际增长7.5%
- 2022年3月18日各地区各大纸厂废纸价格信息
- 江苏开展精准造林绿化 深入推进国土绿化和全民义务植树
- 正隆纸业员工返岗率超95% 预计今年营收同比增10%
- 芬林芬宝劳马新锯材厂将启用自动装载生产线
- 山东一小镇发展纸箱包装生产企业近百家 年产值11亿元
- 打破性别“玻璃天花板” 95岁女院士是“她力量”最佳代言
- 河北辛集市暂停举办体育活动 关闭景区文娱场所
- 红色文物·党史故事 “推出胜利”的小推车
- 侵华日军南京大屠杀遇难同胞纪念馆闭馆
- 核酸采样:一位“点长”的50小时冲刺
- 跑道结冰 哈尔滨机场关闭至9日12时
- 北京地铁全面开启车内加热装置
- 黑河市多举措保障疫情期间残疾人等特殊群体生活稳定
- 北京丰台海淀两处管控区域解封 社区工作者收到“暖心礼物”
- 吉林四平一旅游项目违占耕地两千多亩 投资达10亿元
- 湖南双峰27名非法滞留缅北人员被惩戒:小孩回原籍入学
- 江西新增本土“1+6” 上饶增一中风险地区
- 江西上饶一地调整为中风险地区 实行封闭管理措施
- 快递旺季遭遇雨雪天气 国家邮政局呼吁理解快递小哥
- 高压、孤独,胆大、心细:手执焊枪的水下“蛙人”
- 掏粪掏了36年,他还在琢磨“新门道”
- 内蒙古:二连浩特市新增1例本土确诊病例 额济纳旗累计治愈出院本土确诊病例76例
- 坚守在海拔4300多米的“天路保健医生”
- 38年后,他终于知道了家在哪儿……
-
受降雪影响 辽宁鞍山一农贸市场发生坍塌
8日早上6时左右,受连续强降雪影响,辽宁省鞍山市千山区大屯镇农贸市场发生坍塌,多台车辆被砸。 ...
-
中国舞蹈家协会顶尖教师巡回课堂(重庆站)举办
中新网北京11月8日电 (记者 高凯)由中国舞蹈家协会主办,中国文联舞蹈艺术中心、重庆市舞蹈家协会...
-
边城战“疫”:夜晚七点的暂停键
11月4日晚上7点,是中俄边境城市黑河一个再平凡不过的抗疫时刻。 如果在这一刻按下时间的暂停键...
-
风雪高原战“疫”长卷 寒潮下的西宁疫情防控观察
大风7级,大雪纷扬,最高气温只有-5℃! 这是青海省西宁市开启全城全员首轮核酸检测的天气。 ...
-
拟音师:“雕刻”声音的人【三百六十行】
三百六十行 拟音师:“雕刻”声音的人 闭上眼,90后赵洪泽有时甚至可以通过走路的声音,来判...
-
“双减”之后 中小学教师资格考试为何依然火爆
聚焦 “双减”之后,中小学教师资格考试为何依然火爆 近日,2021年下半年中小学教师资格考试(...
-
大数据助力贫困生成长
探索 大数据助力贫困生成长大数据画像能为贫困生成长带来什么 今年9月,云南省楚雄彝族自治州...
-
“大漠明珠”驶上发展快车道 塔里木盆地做足生态大文章
塔里木盆地做足生态大文章 “大漠明珠”驶上发展快车道 从塔里木盆地的西北角到西南角,和田...
-
职校生可报考事业单位 搬走职业教育的一块绊脚石
职校生可报考事业单位 搬走职业教育的一块绊脚石 “职业院校毕业生也可以报考事业单位了。”...
-
打算“双十一”买买买的姐妹 看完这篇再“剁手”
打算“双十一”买买买的姐妹 看完这篇再“剁手” 女性对于保养的热衷超乎想象,不少人只要是听...
-
完美“飞天”仰仗全宇宙最酷飞船试驾员
完美“飞天”仰仗全宇宙最酷飞船试驾员 11月7日,航天员翟志刚、航天员王亚平开展神舟十三号航天...
-
冠状病毒中损伤血管的蛋白首次确定
冠状病毒中损伤血管的蛋白首次确定 国际战“疫”行动 科技日报北京11月4日电 (记者刘霞)不少...
-
新电池结构让飞行汽车成为可能 相关技术将亮相北京冬奥
新电池结构让飞行汽车成为可能 相关技术将亮相北京冬奥会 科技冬奥进行时 搭载全气候电池...
-
H5N8病毒肆虐全球,我国家禽为何“独善其身”
H5N8病毒肆虐全球,我国家禽为何“独善其身” 科技日报哈尔滨11月7日电 (记者李丽云)记者11月7...
-
重庆奉节一民警因公殉职 年仅28岁
中新网重庆11月9日电 (记者 刘相琳)记者9日从重庆市公安局获悉,重庆奉节县公安局民警袁华押解一...
-
哈尔滨市新增本土新冠肺炎确诊病例1例
中新网哈尔滨11月9日电 (记者 刘锡菊)9日,哈尔滨市卫健委发布哈尔滨市11月8日0-24时疫情通报:11...
-
成都本地累计在管密接2757人、次密9097人
(抗击新冠肺炎)成都本地累计在管密接2757人、次密9097人 中新网成都11月9日电 (记者 贺劭清 ...
-
成都累计报告确诊病例23例 出现1传13特殊案例
(抗击新冠肺炎)成都累计报告确诊病例23例 出现1传13特殊案例 中新社成都11月9日电 (记者 贺劭...
-
呼和浩特一学校宿管员扇打学生致双耳鼓膜穿孔 分管校长被免
中新网呼和浩特11月9日电 (记者 张林虎)9日,针对“宿管员扇打学生致其双耳鼓膜穿孔”一事,呼和...
-
郑州通报8例确诊病例和无症状感染者活动轨迹
中新网11月9日电 据郑州市委宣传部官方微信消息,11月8日0至24时,郑州市新增阳性感染者3例,均为...
-
新疆阿克苏果农:我们的生活像苹果一样甜
中新社新疆阿克苏11月9日电 题:新疆阿克苏果农:我们的生活像苹果一样甜 作者 苟继鹏 “我...
-
河北辛集开展大规模消毒消杀工作
今天(9日)上午,河北省辛集市召开疫情防控新闻发布会。会上,辛集市科学技术局局长辛彦卜介绍,新冠...
-
河北辛集新增本土确诊11例 已转运定点医院诊治
今天(9日)上午,河北省辛集市召开疫情防控新闻发布会,辛集市副市长刘士民介绍,2021年11月8日0时至...
-
石家庄深泽县第五轮全员核酸检测结果全部为阴性
11月9日,石家庄市召开第12场新冠肺炎疫情防控工作新闻发布会。发布会上,石家庄市深泽县县长郝英鹏...
-
海口市1例治愈后的境外输入病例复阳 已转至定点医院隔离医学观察
中新网海口11月8日电 (记者 张茜翼)海口市新型冠状病毒感染肺炎疫情防控工作指挥部8日通报称,11...
-
四川新增本土确诊病例4例
中新网11月8日电 据四川省卫健委网站消息,11月7日0-24时,四川新增新型冠状病毒肺炎确诊病例5例(...
-
黑龙江省新增新冠肺炎本土确诊病例6例
中新网哈尔滨11月8日电 (程岩 记者 史轶夫)黑龙江省卫健委8日发布消息,7日0-24时,黑龙江省黑河...
-
河南新增本土确诊病例18例 其中郑州市16例周口市2例
中新网11月8日电 据河南省卫健委官方微博消息,11月7日0—24时,河南省新增本土确诊病例18例(郑州...
-
河北新增确诊病例8例 新增无症状感染者1例
中新网11月8日电 据河北省卫健委网站消息,2021年11月7日0—24时,河北省新增新型冠状病毒肺炎确诊...
-
寒潮持续发威!南方气温纷纷触底 强降雪中心转移至东北
中国天气网讯 今天(11月8日),寒潮继续南下,持续发威,南方大部最高气温将纷纷触底。强降雪中心将...
-
雪后寒!今日北京晴天回归北风劲吹 最高气温5℃上下
中国天气网讯 今天(11月8日)北京晴天回归,但在风寒效应下,“冷”仍然是天气的主题。气温方面,今...
-
黑龙江新增本土确诊病例6例 均在黑河市爱辉区
中新网11月8日电 据黑龙江省卫健委网站消息,2021年11月7日0-24时,黑龙江省新增新冠肺炎本土确诊...
-
寒潮继续影响华东华南等地 东北地区等地有强降雪
中新网11月8日电 据中央气象台网站消息,受寒潮影响,预计11月8日08时至9日08时,黄淮东部、江淮东...
-
辽宁新增本土确诊病例20例 新增本土无症状感染者12例
中新网11月8日电 据辽宁省卫健委网站消息,11月7日0时至24时,辽宁省新增20例本土新冠肺炎确诊病例...
-
寒潮影响“加码”:吉林力保电力供应 停课停运范围加大
中新网长春11月9日电 (记者 郭佳 张瑶)连日来,一轮寒潮引发的强降雪席卷中国北方。位于东北地区...
-
常州连续一周无新增病例 10日全市各类学校将错峰复学
中新网常州11月9日电 (记者 唐娟)11月9日,常州疫情防控指挥部学校防控组对外发布,自11月10起,...
-
哈尔滨机场开放恢复运行 计划航班45架次
中新网哈尔滨11月9日电 (仇建 记者 史轶夫)9日12时22分,随着哈尔滨经阜阳飞往三亚的FU6685航班...
-
山西警方抓获6名“摸金校尉” 缴获“虎枕”等大量文物
中新网长治11月9日电 (记者 李庭耀)记者9日从山西省长治市公安局上党分局获悉,上党警方侦破系列...
-
西藏基层第一书记话产业发展推进乡村振兴
中新网日喀则11月9日电(记者 赵朗)近日,由西藏自治区网信办主办的第一书记话小康活动先后走进山南...
-
内蒙古通辽:强降雪致8个旗县区受灾
中新网通辽11月9日电 (记者 张林虎)9日,记者从内蒙古自治区通辽市应急管理局获悉,自11月5日起,...
-
成都金堂:医护人取消婚礼坚守岗位 手捧花被送到了战“疫”一线
中新网成都11月9日电 (邹立杨)连日来,华西医院金堂县第一人民医院实验医学科的主检验师易维佳都在...
-
江西铅山新一轮核酸检测结果均为阴性
(抗击新冠肺炎)江西铅山新一轮核酸检测结果均为阴性 中新网南昌11月9日电 (记者 吴鹏泉)江西省...
-
辽宁大连幼儿园和中小学学生即日起暂缓入校
中新网11月9日电 据辽宁省大连市人民政府新闻办公室官方微博消息,大连市新冠肺炎疫情防控总指挥部...
-
2021年北京市重点碳排放单位:涉及多家印刷包装企业
3月15日,北京市生态环境局、北京市统计局发布了《关于公布2021年度北京市重点碳排放单位 及一般报告单...
-
北京新增1例本土确诊病例
中新网11月8日电 据北京卫健委官方微博消息,11月7日0时至24时,北京新增1例本土确诊病例,无新增...
-
河北石家庄深泽县7日新增1例无症状感染者 为8岁男童
中新网11月8日电 据石家庄卫健委官方微信消息,石家庄深泽县应对新冠肺炎疫情工作领导小组办公室8...
-
高速封闭、机场关闭、学校停课 辽宁多部门发应急预案应对极端天气
中新网沈阳11月8日电 (李晛 王景巍)7日在寒潮影响下,东北地区局地降大雪。辽宁省气象部门当日连...
-
云南新增本土确诊病例3例 新增本土无症状感染者3例
中新网11月8日电 据云南省卫健委网站消息,11月7日0—24时,云南省新增确诊病例9例,其中境外输入...
-
努力让每个人都有出彩机会
努力让每个人都有出彩机会 “孩子明年要参加中考,成绩一直提不上去,送他读职高,也是一种选择...
-
参与和见证中国水电发展
参与和见证中国水电发展 余吉安的童年是在马来西亚加里曼丹岛的沙捞越州古晋市度过的。家门口的...
X 关闭
X 关闭